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Abstract

While the CALPHAD which stands for CALculation of PHAse Diagrams is one of
the most successful data-driven paradigms and has already made huge impact in
materials science especially physical metallurgy during past 50 years, AI-based
approaches recently are getting more and more attention in many different appli-
cation scenarios within computational materials science. In this attention track
perspective, we would like to share the considerations about the possibility of inte-
grating the current trendy AI-based methods into CALPHAD mainly for obtaining
high-quality data and the thermodynamic model development.

1 Introduction

CALPHAD, a methodology introduced in 1970 by Larry Kaufman is perhaps one of the earliest
methods integrating physical modeling and learning from data to digitize the thermodynamics of
materials with phase diagram which is the graphical representations of the distributions of the phases
under the different external conditions [1, 2, 3]. The CALPHAD workflow can be roughly divided
into the following sections: data capture, construction of the thermodynamic model, optimization of
the model through updating the undetermined parameters,database generation and application to many
cases such as: phase stability prediction [4, 5], phase-field modeling [6, 7], precipitation simulation
[8, 9], etc. However, current CALPHAD has several challenges: first, lack of the high-quality data;
second, the commonly used thermodynamic model is simple but not very robust; Third, due to the
possible inconsistency caused by the multiple sources of data, it’s hard to automatically determine
the optimized modeling but with lots of artifacts.

While huge progress in many scientific disciplinaries is made by AI especially the neural-network
(NN) based machine learning (ML) recently, it’s especially effective for the multiscale phenomena
with curse of dimensionality [10] such as protein folding [11], fluid mechanics [12] and quantum
many-body simulations [13]. Though the thermodynamics is typically not considered as a multiscale
problem, its complexity still comes from the huge amount of the degree of freedoms. Here we would
like to mainly discuss the possibility of whether AI-led methods would assist CALPHAD to deal with
its current challenges including lack of the data and developing more robust thermodynamic model.

2 AI for data side of CALPHAD

One of the key challenges of the current CALPHAD is the lack of the necessary data, which includes
thermochemical data and phase boundary data. However, experimental data acquisition is always a
tedious and time-consuming process. As a result, the first-principles calculations based on density
functional theory (DFT) have been widely equipped to supplement the experimental data and reach
the acceptable accuracy for thermochemical data [14, 15]. Nevertheless, required phase boundary
data is still hard to be obtained directly from the first-principles calculations. The main challenge to
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calculate the phase boundaries is it requires high computational accuracy: an error of 1 meV/atom in
Gibbs energy of a condensed matter phase may cause an error around 10 K in transition temperature
[16, 17]. The error of the current state-of-the-art (SOTA) phase boundary estimation fully based on
DFT without ML is around 100K [16, 18] and this is far more away from replacing the experimental
measurement to provide the predictions for technological purpose. One way to deal with this accuracy
issue is to go beyond DFT to attempt more accurate first principles methods [19, 17, 20]. However, it
is usually accompanied with huge computational cost and the wider application is limited.

With the help of current NN-based ML, it is possible to tackle the problem by more efficiently
constructing DFT functionals approaching the chemical accuracy and several recent works have
already focused on this path [21, 22]. However, we need to consider solid solution [23], liquid
phase with ordering [24], while in realistic experiments, anharmonicity [25] and defects [26] always
exist in materials, only DFT-level electronic structure calculation perhaps cannot handle all this and
need the larger scale simulation. That’s exactly the case we need the multiscale modeling to reach
the required accuracy with ML as a tool to across the scale gap [10]. One recent progress is the
satisfied phase diagrams produced by DeePMD which is a kind of molecular dynamics simulation
with the ML trained ab initio potentials [27, 28]. It can be hypothesized that if we connect all the
SOTA computational methods at the different scales with the help of ML, it would have the chance
to produce accurate enough high-throughput phase boundaries data all based on first principles
calculations and resolve the lack of the experimental data for CALPHAD.

3 Model side of CALPHAD: a specialized ML model?

Only data is not enough, CALPHAD still needs robust, easy-to-use thermodynamic models to depict
the stability of the different phases in the target system. Here the thermodynamic model means to
develop a description for the free energy of a phase as a function of some degrees of freedom related
to our interest. We consider the thermodynamic model within CALPHAD itself could be seen as a
kind of specialized ML model. It is trained with limited amount of the collected data to identify the
correct phase stability while CALPHAD modeling here could be seen as a supervised learning task.
It is also worth to mention that the cluster variation method (CVM) [29, 30], which is considered
as a potential thermodynamics model for CALPHAD but limited on its complexity, is introduced
to gain the insight to develop the generalized belief propagation to study the probabilistic inference
[31, 32, 33]. This implies the strong relationship between the thermodynamic model and machine
learning [34]. Recently CALPHAD community expects to impose more physics into CALPHAD and
replace the empirical model to improve its robust [35]. However, the current popular NN based ML
models usually requires huge amount of data and that’s exactly one of the challenges of CALPHAD,
lack of the high-quality data. Even with the larger dataset, the NN-based model is still suspicious
to apply as it generally not considers the physics constraint here is the thermodynamics law. Some
recent work is taking use of non NN-based methods within CALPHAD community but only on
some specific cases such as the uncertainty quantifications [36, 37]. The rapidly developing few-shot
learning [38] may be proper for this scenario, but the related attempt is still lacking.

4 Conclusion

Based on all we have discussed, we consider current CALPHAD would definitely benefit from AI
through obtaining high-quality data. There are still some other connections between CALPHAD
and AI-led methods we haven’t discussed: automatic data collection with text-mining and database
construction [39, 40, 41], high-throughput thermodynamics data generation [42, 43], constructing data
ecosystem for data recycle [44], AI-guided high-throughput experimental autonomy for CALPHAD
[45], etc. However, just like what we mentioned they are still mainly about the data side of CALPHAD.
As we consider the thermodynamic model within CALPHAD can be treated as a specialized ML
model, the development of more robust thermodynamic model is necessary but still a gap. This is
another interesting topic to explore and would perhaps benefit the both sides.
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